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Abstract

In this paper we study the following problem of Bollobás and Scott: What is the
smallest f(k, m) such that for any integer k ≥ 2 and any graph G with m edges, there is a

partition V (G) =
⋃k

i=1
Vi such that for 1 ≤ i 6= j ≤ k, e(Vi ∪Vj) ≤ f(k, m)? We show that

f(k, m) < 1.6m/k + o(m), and f(k, m) < 1.5m/k + o(m) for k ≥ 23. (While the graph
K1,n shows that f(k, m) ≥ m/(k − 1), which is 1.5m/k when k = 3.) We also show that
f(4, m) ≤ m/3+ o(m) and f(5, m) ≤ 4m/15+ o(m), providing evidence to a conjecture of
Bollobás and Scott. For dense graphs, we improve the bound to 4m/k2 + o(m), which, for
large graphs, answers in the affirmative a related question of Bollobás and Scott.
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1 Introduction

For a graph G, we use V (G) and E(G) to denote the vertex set and edge set of G, respectively.
We use δ(G) to denote the minimum degree of G. For subsets S, T of V (G), we use e(S, T )
to denote the number of edges of G with one end in S and the other in T ; e(S) to denote the
number of edges with both ends in S; and d(S) to denote the number of edges with at least
one end in S.

Classical graph partition problems often ask for partitions of a graph that optimize a single
quantity. For example, the Maximum Bipartite Subgraph Problem asks for a partition V1, V2 of
the vertices of a graph that maximizes e(V1, V2). This problem is NP-hard, see [11]. However,
it is easy to prove that any graph with m edges has a partition V1, V2 with e(V1, V2) ≥ m/2.
Edwards [8,9] improved this lower bound to m/2+ 1

4 (
√

2m + 1/4−1/2), which is best possible
for complete graphs K2n+1.

A different type of partition problems ask for a partition of a given graph that optimizes
several quantities simultaneously. Such problems are called Judicious Partition Problems by
Bollobás and Scott [3]. The Bottleneck Bipartition Problem, raised by Entringer (see, for
example, [13, 15]) is a judicious partition problem: Find a partition V1, V2 of the vertex set
of a graph G that minimizes max{e(V1), e(V2)}. Shahrokhi and Székely [16] showed that this
problem is also NP-hard. Porter [13] proved that any graph with m edges has a partition
V1, V2 with e(Vi) ≤ m/4 + O(

√
m), establishing a conjecture of Erdös. (A matrix version of

this Erdös conjecture was formulated by Entringer, and was solved by Porter and Székely [14].)
Bollobás and Scott [5] improved this to e(Vi) ≤ m/4 + 1

8 (
√

2m + 1/4− 1/2), and showed that
K2n+1 are the only extremal graphs. We note that in [1] a connection is given between the
Maximum Bipartite Subgraph Problem and the Bottleneck Bipartition Problem.

Bollobás and Scott [5] proved that for any integer k ≥ 1 and any graph G of size m,
V (G) can be partitioned into V1, . . . , Vk such that e(Vi) ≤ m

k2 + k−1
2k2 (

√

2m + 1/4 − 1/2) for
i ∈ {1, 2, . . . , k}. The complete graphs of order kn + 1 are the only extremal graphs (modulo
isolated vertices).

In this paper we study the following judicious partition problem of Bollobás and Scott [7].

Problem 1.1 What is the smallest f(k,m) such that for any integer k ≥ 2 and any graph G
with m edges, there is a partition V (G) =

⋃k
i=1 Vi such that for 1 ≤ i 6= j ≤ k, e(Vi ∪ Vj) ≤

f(k,m)?

Note that the case k = 2 for Problem 1.1 is trivial. For k = 3, we note that for each
permutation ijk of {1, 2, 3}, d(Vi) = m − e(Vj ∪ Vk); so Problem 1.1 asks for a lower bound
on min{d(Vi) : i = 1, 2, 3} which is studied in [12]. For k ≥ 4, bounding max{e(Vi ∪ Vj) : 1 ≤
i 6= j ≤ k} is much more difficult than bounding max{e(Vi) : 1 ≤ i ≤ k}: In the former case
one needs to bound

(

k
2

)

quantities resulted from a k-partition, while in the latter case one only
needs to bound k quantities.

In Section 2, we use probabilistic method to show that f(k,m) < 1.6m/k + o(m), and that
f(k,m) < 1.5m/k + o(m) for k ≥ 23.

The following example shows that f(k,m) ≥ m/(k − 1), which is close to 1.6m/k when
k = 3. For k ≥ 3, take the graph K1,n with n ≥ k− 1, and let x be the vertex of degree n. Let
V1, . . . , Vk be a k-partition of V (G), with x ∈ V1. Without loss of generality, we may assume
that |V2| ≥ (n + 1 − |V1|)/(k − 1). Now e(V1 ∪ V2) ≥ (n + 1 − |V1|)/(k − 1) + (|V1| − 1) =
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(n + (k − 2)(|V1| − 1))/(k − 1) ≥ n/(k − 1) = m/(k − 1), where m is the number of edges in
K1,n.

On the other hand, the complete graph Kk+2 has m =
(

k+2
2

)

edges, and any k-partition
V1, . . . , Vk of Kk+2 has two sets, say V1, V2, such that |V1 ∪ V2| = 4. So e(V1 ∪ V2) = 6 =

12m
(k+2)(k+1) . This shows that f(k,m) ≥ 12m

(k+2)(k+1) . For general complete graphs Kn, a simple
counting shows that for any k-partition V1, . . . , Vk of Kn, k ≥ 2, there exist Vi, Vj such that

|Vi| + |Vj | ≥ 2n/k; and hence e(Vi ∪ Vj) ≥
(2n/k

2

)

. From this, we can deduce that f(k,m) ≥
4m/k2 + O(n), and this bound is achieved by taking a balanced k-partition of V (Kn) (i.e.,
any two partition sets differ in size by at most one).

Note that K1,n is sparse, i.e. the number of edges is O(n). The consideration of K1,n and
Kk+2 led Bollobás and Scott [7] to the following conjecture.

Conjecture 1.2 f(k,m) ≤ 12m
(k+2)(k+1) + O(n).

The case k = 2 for Conjecture 1.2 is trivial (as the bound becomes m + O(n)).
For k = 3, Conjecture 1.2 is equivalent to the following problem: Find a partition V (G) =

V1 ∪ V2 ∪ V3 so that d(Vi) ≥ 2m/5 + O(n). It is shown in [12] that if G is a graph with m
edges then there is a partition V1, . . . , Vk of V (G) such that d(Vi) ≥ m/(k − 1) + O(m4/5)
(establishing a conjecture of Bollobás and Scott [6, 7], for large graphs). This result implies
f(3,m) < m/2 + o(m4/5); so Conjecture 1.2 holds for k = 3.

In Section 3, we prove the bound 4m/k2 + o(m) for dense graphs, which implies that
Conjecture 1.2 holds for dense graphs. As a consequence, we establish the following conjecture
of Bollobás and Scott [7] for large graphs.

Conjecture 1.3 For each k ≥ 2 there is a constant ck > 0 such that if G is a graph with m
edges, n vertices, and δ(G) ≥ ckn, then there is a partition V1, . . . , Vk of V (G) such that for

1 ≤ i 6= j ≤ k,

e(Vi, Vj) ≤
12m

(k + 2)(k + 1)
.

In Section 4, we show f(4,m) ≤ m/3 + o(m) and f(5,m) ≤ 4m/15 + 0(m), which implies
Conjecture 1.2 for k = 4 and k = 5.

In Section 5, we study partitions V1, . . . , Vk of graphs that optimize both max{e(Vi) : 1 ≤
i ≤ k} and max{e(Vi∪Vj) : 1 ≤ i 6= j ≤ k}. Bollobás and Scott [7] asked whether it is possible
to find a partition V1, . . . , Vk such that e(Vi) ≤ m

k2 + k−1
2k2 (

√

2m + 1/4− 1/2) for 1 ≤ i ≤ k, and
e(Vi ∪ Vj) ≤ 12m

(k+2)(k+1) + O(n) for 1 ≤ i 6= j ≤ k. We show that for k = 3 and k = 4 one can
find a partition satisfying these bounds asymptotically.

2 A bound for k-partitions

In this section, we prove a bound on f(k,m) in Problem 1.1. First, we state the Azuma-
Hoeffding inequality [2,10], which will be used to bound deviations. We use the version given
in [4].
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Lemma 2.1 Let Z1, . . . , Zn be independent random variables taking values in {1, . . . , k}, let

Z := (Z1, . . . , Zn), and let f : {1, . . . , k}n → N such that |f(Y ) − f(Y ′)| ≤ ci for any Y, Y ′ ∈
{1, . . . , k}n that differ only in the ith coordinate. Then for any z > 0,

P (f(Z) ≥ E(f(Z)) + z) ≤ exp

(

−z2

2
∑k

i=1 c2
i

)

,

P (f(Z) ≤ E(f(Z)) − z) ≤ exp

(

−z2

2
∑k

i=1 c2
i

)

.

We need a simple lemma which will also be used in Section 4 for finding probabilities when
finding 4-partitions.

Lemma 2.2 Let aj ≥ 0 for j ∈ {1, 2, 3, 4} such that α :=
∑4

j=1 aj > 0, and let fij(xi, xj) =
(ai + aj)(xi + xj) for 1 ≤ i 6= j ≤ 4. Then there exist pi ∈ [0, 1/2], 1 ≤ i ≤ 4, such that
∑4

i=1 pi = 1 and, for 1 ≤ i 6= j ≤ 4, fij(pi, pj) ≤ α/3.

Proof. First, assume ai ≤ α/2 for all 1 ≤ i ≤ 4. Then pi := 1/2 − ai/α ∈ [0, 1
2 ], and

fij(pi, pj) = (ai + aj)

(

1 − ai + aj

α

)

= − 1

α
(ai + aj −

α

2
)2 +

α

4
≤ α

4
.

So we may assume without loss of generality that a4 > α/2. Then ai + aj ≤ α/2 for all
1 ≤ i 6= j ≤ 3. Let p1 = p2 = p3 = 1/3 and p4 = 0. Then for 1 ≤ i ≤ 3, fi4 = (ai+a4)/3 ≤ α/3;
and for 1 ≤ i 6= j ≤ 3, fij = (ai + aj)(2/3) ≤ (α/2)(2/3) = α/3.

Remark. From the proof of Lemma 2.2, we may choose pi = 0 when ai > α/2, and
pi ≤ max{1/2 − ai/α, 1/3} when ai ≤ α/2.

We need another lemma.

Lemma 2.3 Let h4 = 1/3. There exist tk, hk for k ≥ 5 such that

hk =
2 − 2tk
k − 2tk

, and

2 − 2tk
k − 2tk

=
k − 3

k
hk−1 +

(

hk−1

k
+

4

k(k − 1)

)

2tk.

Moreover, hk < 1.6/k, and hk < 1.5/k for k ≥ 23.

Proof. We first show that there exist tk ∈ (0, 1/2) and hk ∈ (1/(k − 1), 2/k), k ≥ 5, such that

hk =
2 − 2tk
k − 2tk

, and

2 − 2tk
k − 2tk

=
k − 3

k
hk−1 +

(

hk−1

k
+

4

k(k − 1)

)

2tk.

Suppose k ≥ 5. Let

fk(t) =
2 − 2t

k − 2t
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and

gk(t) =
k − 3

k
hk−1 +

(

hk−1

k
+

4

k(k − 1)

)

2t.

It is easy to see that fk(t) is decreasing, and gk(t) is increasing. Now assume that 1
k−1 ≤

hk−1 < 2
k−1 for some k ≥ 5. Note that

gk(0) =
k − 3

k
hk−1 <

k − 3

k

2

k − 1
<

2

k
= fk(0),

and

gk(1/2) =
k − 2

k
hk−1 +

4

k(k − 1)
≥ k − 2

k(k − 1)
+

4

k(k − 1)
>

1

k − 1
= fk(1/2).

Therefore, since fk(t) is decreasing and gk(t) is increasing, there exists tk ∈ (0, 1/2), for each
k ≥ 5, such that fk(tk) = gk(tk). Let hk := fk(tk) = 2−2tk

k−2tk
. Then since tk ∈ (0, 1/2),

1/(k − 1) < hk < 2/k for k ≥ 5.

Next, we show that hk < 1.6/k, and hk < 1.5/k for k ≥ 23. Let hk = ck/k, and it suffices
to show ck < 1.6, and ck < 1.5 = 3/2 for k ≥ 23. Since hk ∈ (1/(k − 1), 2/k), ck ∈ (1, 2). Note
that

ck =
2 − 2tk
k − 2tk

k = (k − 3)hk−1 +

(

hk−1 +
4

k − 1

)

2tk =
k − 3

k − 1
ck−1 +

4 + ck−1

k − 1
2tk.

From ck = 2−2tk
k−2tk

k we deduce tk = 2k−kck

2k−2ck
; and so

ck =
k − 3

k − 1
ck−1 +

(4 + ck−1)(2k − kck)

(k − 1)(k − ck)
.

With h4 = 1/3 (and hence c4 = 4/3) and using MATLAB, we have ck < 1.6 for k =
5, . . . , 22, and c23 ≈ 1.4962 < 3/2. Now assume k ≥ 24 and ck−1 < 3/2. Then

ck <
k − 3

k − 1

(

3

2

)

+
(4 + 3/2)(2k − kck)

(k − 1)(k − ck)
,

and so
2(k − 1)ck < 3(k − 3) + 11(2 − ck) + 11(2 − ck)ck/(k − ck).

Hence, since ck ∈ (1, 2),

(2k + 9)ck < 3k + 13 +
11(2 − ck)ck

k − ck
= 3k + 13 +

11(1 − (1 − ck)
2)

k − ck
< 3k + 13 + 11/(k − 2).

Therefore,

ck <
3k + 13

2k + 9
+

11

(2k + 9)(k − 2)
≤ 3/2.

The last inequality holds since we assume k ≥ 24.

We can now prove the main lemma for k-partitions.
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Lemma 2.4 Let k ≥ 4 be an integer, let aj ≥ 0 for j ∈ {1, . . . , k} such that α :=
∑k

j=1 aj > 0,
and let fij(xi, xj) = (ai + aj)(xi + xj) for 1 ≤ i 6= j ≤ k. Let hk be defined as in Lemma 2.3.

Then there exist pi ∈ [0, 2/k], 1 ≤ i ≤ k, such that
∑k

i=1 pi = 1 and, for 1 ≤ i 6= j ≤ k,

fij(pi, pj) ≤ 1.6α/k, and fij(pi, pj) ≤ 1.5α/k for k ≥ 23.

Proof. We apply induction on k; the case k = 4 follows from Lemma 2.2 (as h4 = 1/3).
Suppose k ≥ 5.

First, assume that there exists some l ∈ {1, . . . , k} such that al ≥ tα, say l = k. Let pi = x
for 1 ≤ i < k, with 0 ≤ x ≤ 1

k−1 , and let pk = 1−(k−1)x. Then
∑k

i=1 pi = 1; for 1 ≤ i ≤ k−1,

fik(pi, pk) ≤ (1 − (k − 2)x)α;

and for 1 ≤ i 6= j ≤ k − 1,

fij(pi, pj) ≤ 2x(ai + aj) ≤ 2x(α − ak) ≤ (1 − t)2xα.

We wish to minimize max{1 − (k − 2)x, (1 − t)2x}. Setting 1 − (k − 2)x = (1 − t)2x, we have

x =
1

k − 2t

and, for 1 ≤ i 6= j ≤ k,

fij(pi, pj) ≤
2 − 2t

k − 2t
α.

Since 0 ≤ x ≤ 1
k−1 and x = 1/(k − 2t), we have 0 ≤ t ≤ 1

2 .
Now let us assume that ai ≤ tα for all 1 ≤ i ≤ k. By induction hypothesis, for any

l ∈ {1, . . . , k} there exist pl
i ∈ [0, 2/(k − 1)], i ∈ {1, . . . , k} \ {l}, such that

∑

i∈{1,...,k}\{l} pl
i = 1

and for any {i, j} ⊆ {1, . . . , k} \ {l},

(ai + aj)(p
l
i + pl

j) ≤ hk−1(α − al).

For 1 ≤ i ≤ k, let

pi =
1

k

∑

l∈{1,...,k}\{i}

pl
i.

Since pl
i ≤ 2/(k − 1) for i ∈ {1, . . . , k} \ {l}, we have pi ∈ [0, 2/k] for 1 ≤ i ≤ k. Also,

k
∑

i=1

pi =
1

k

k
∑

i=1

∑

l∈{1,...,k}\{i}

pl
i =

1

k

k
∑

l=1

∑

i∈{1,...,k}\{l}

pl
i =

1

k

k
∑

l=1

1 = 1.

6



Moreover, for 1 ≤ i 6= j ≤ k,

fij(pi, pj) = (ai + aj)(pi + pj)

=
1

k
(ai + aj)





∑

l∈{1,...,k}\{i}

pl
i +

∑

l∈{1,...,k}\{j}

pl
j





=
1

k





∑

l∈{1,...,k}\{i,j}

(ai + aj)(p
l
i + pl

j)



+
1

k
(ai + aj)(p

j
i + pi

j)

≤ hk−1

k

∑

l∈{1,...,k}\{i,j}

(α − al) +
1

k
(ai + aj)(p

j
i + pi

j)

≤ hk−1

k
((k − 3)α + ai + aj) +

4

k(k − 1)
(ai + aj)

≤ k − 3

k
hk−1α +

(

hk−1

k
+

4

k(k − 1)

)

2tα.

By Lemma 2.3 and since h4 = 1/3, there exist tk, hk for k ≥ 5 such that

hk =
2 − 2tk
k − 2tk

=
k − 3

k
hk−1 +

(

hk−1

k
+

4

k(k − 1)

)

2tk,

hk < 1.6/k, and hk < 1.5/k for k ≥ 23. This completes the proof of the lemma.

Theorem 2.5 Let k ≥ 4 be an integer. Then f(k,m) ≤ hkm + O(m4/5), where hk < 1.6/k,

and hk < 1.5/k for k ≥ 23.

Proof. Let G be a graph with m edges, and we may assume that G is connected (as otherwise we
simply consider individual components). Let V (G) = {v1, . . . , vn} such that d(v1) ≥ d(v2) ≥
. . . ≥ d(vn). Let V1 = {v1, . . . , vt} with t = ⌊mα⌋, where 0 < α < 1/2 and will be optimized
later. Then t < n since m < n2/2. Moreover, e(V1) < t2/2 ≤ 1

2m2α and d(vt+1) ≤ 2m1−α

(since (t + 1)d(vt+1) ≤
∑t+1

i=1 d(vi) ≤ 2m).
Label the vertices in V2 := V (G)\V1 as u1, . . . , un−t such that e(ui, V1∪{u1, . . . , ui−1}) > 0

for i = 1, . . . , n − t. Note that this can be done since G is connected.
Fix a random k-partition V1 =

⋃k
i=1 Yi, and assign each member of Yi the color i, 1 ≤ i ≤ k.

Extend this coloring to V (G) such that each vertex ui ∈ V2 is independently assigned the color
j with probability pi

j , where
∑k

j=1 pi
j = 1 and pi

j will be determined later. Let Zi denote the
indicator random variable of the event of coloring ui. Hence Zi = j iff ui is assigned the color
j.

Let Gi = G[V1 ∪ {u1, · · · , ui}] for i = 1, . . . , n − t, and let G0 = G[V1]. Let X0
j = Yj for

1 ≤ j ≤ k, and x0
jl = e(X0

j ∪X0
l ) for 1 ≤ j 6= l ≤ k. For i = 1, . . . , n− t and 1 ≤ j, l ≤ k, define

Xi
j := {vertices of Gi with color j},

xi
jl := e(Xi

j ∪ Xi
l ),

∆xi
jl := xi

jl − xi−1
jl ,

bi
j := e(ui,X

i−1
j ).
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Note that bi
j depends on (Z1, . . . , Zi−1) only. Hence for 1 ≤ i ≤ n − t and 1 ≤ j 6= l ≤ k,

E(∆xi
jl|Z1, . . . , Zi−1) = (bi

j + bi
l)(p

i
j + pi

l),

and so
E(∆xi

jl) = (ai
j + ai

l)(p
i
j + pi

l),

where here
ai

j =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)b
i
j .

Since bi
j is determined by (Z1, . . . , Zi−1), ai

j is determined by ps
j, 1 ≤ j ≤ k and 1 ≤ s ≤

i − 1. Note that
k
∑

j=1
bi
j = e(ui, Gi−1) > 0, and that e(ui, Gi−1) is independent of Z1, . . . , Zn−t.

Moreover,

k
∑

j=1

ai
j =

k
∑

j=1

∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)b
i
j

=
∑

(Z1,...,Zi−1)



P(Z1, . . . , Zi−1)

k
∑

j=1

bi
j





=
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)e(ui, Gi−1)

= e(ui, Gi−1)

> 0.

So by Lemma 2.4, there exist pi
j ∈ [0, 1], 1 ≤ j ≤ k, such that

∑k
j=1 pi

j = 1 and, for 1 ≤ i ≤ n−t
and 1 ≤ j 6= l ≤ k,

E(∆xi
jl) ≤ hk

k
∑

j=1

ai
j = hke(ui, Gi−1).

Note that pi
j is determined by ai

j , 1 ≤ i ≤ k; and hence pi
j is recursively determined by ps

j ,

1 ≤ j ≤ k and 1 ≤ s ≤ i − 1. Also note that m = e(G0) +
∑n−t

i=1 e(ui, Gi−1). Now

E(xn−t
jl ) =

n−t
∑

i=1

E(∆xi
jl) + E(x0

jl)

≤ hk

n−t
∑

i=1

e(ui, Gi−1) + x0
jl

≤ hkm + e(V1)

≤ hkm +
1

2
m2α.
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Clearly, changing the color of ui (i.e., changing Zi) affects xjl := xn−t
jl by at most d(ui). So by

Lemma 2.1,

P (xjl > E(xjl) + z) ≤ exp

(

− z2

2
∑n−t

i=1 d(ui)2

)

≤ exp

(

− z2

2
∑n−t

i=1 d(ui)d(vt+1)

)

< exp

(

− z2

4m2m1−α

)

≤ exp

(

− z2

8m2−α

)

.

Let z = (8 ln(k(k − 1)/2))
1

2 m1−α

2 . Then for 1 ≤ j 6= l ≤ k,

P (xjl > E(xjl) + z) < exp(− ln(k(k − 1)/2)) =
2

k(k − 1)
.

So there exists a partition V (G) =
⋃k

i=1 Xi such that for 1 ≤ j 6= l ≤ k,

e(Xj ∪ Xl) ≤ E(xjl) + z ≤ hkm +
1

2
m2α + z ≤ hkm + o(m),

where the o(m) term in the expression is

1

2
m2α + (8 ln(k(k − 1)/2))

1

2 m1−α

2 .

Choosing α = 2
5 to minimize max{2α, 1 − α/2}, the o(m) term becomes O(m

4

5 ).

3 Dense graphs

We now prove Conjecture 1.2 for graphs with large minimum degree. The approach is similar
to that for proving Theorem 2.5, but simpler because the large minimum degree condition
helps to bound e(V1, V2). Note that the term 4m/k2 in the theorem below is best possible (by
simply taking a random k-partition).

Theorem 3.1 Let k ≥ 2 be an integer and let ǫ > 0. If G is a graph with m edges and

δ(G) ≥ ǫn, then there is a partition X1, . . . ,Xk of V (G) such that for 1 ≤ i 6= j ≤ k,

e(Xi ∪ Xj) ≤
4

k2
m +

(

√

2/ǫ +

√

8 ln
k(k − 1)

2

)

m5/6.

Proof. We may assume that G is connected (otherwise it suffices to consider individual com-
ponents). Let V (G) = {v1, ..., vn} such that d(v1) ≥ d(v2) ≥ ... ≥ d(vn). Let V1 = {v1, ..., vt}
with t = ⌊mα⌋, where 0 < α < 1/2. Then t < n, e(V1) ≤ m2α/2, and d(vt+1) ≤ 2m1−α. Let
V2 = V (G)\V1 = {u1, ..., un−t} such that e(ui, V1 ∪ {u1, ..., ui−1}) > 0 for i = 1, ..., n − t.

9



Now assume δ(G) ≥ ǫn. Then 2m =
∑

v∈V (G) d(v) ≥ ǫn2. So n ≤
√

2m/ǫ. Thus,

e(V1, V2) + 2e(V1) =
t
∑

i=1

d(vi) < tn ≤ mα
√

2m/ǫ =
√

2/ǫm1/2+α.

Fix a random partition V1 = Y1 ∪ Y2 ∪ ... ∪ Yk and, for each i ∈ {1, ..., k}, assign the color
i to all vertices in Yi. We extend this coloring to V (G) by independently assigning the color
j (for each j ∈ {1, ..., k}) to each vertex ui ∈ V2 with probability 1/k. Let Zi denote the
indicator random variable of the event of coloring ui.

Let Xi be the set of vertices of G with color i. Then Yi ⊆ Xi for 1 ≤ i ≤ k; and for
1 ≤ i 6= j ≤ k,

E(e(Xi ∪ Xj)) = E(e((Xi ∪ Xj) ∩ V2)) + E(e((Xi ∪ Xj) ∩ V2, Yi ∪ Yj)) + e(Yi ∪ Yj)

≤ (2/k)2e(V2) + e(V1, V2) + e(V1)

≤ 4

k2
m +

√

2/ǫm1/2+α.

Clearly, changing the color of ui (i.e., changing Zi) affects e(Xi∪Xj) by at most d(ui). Then
as in the proof of Theorem 2.5, we apply Lemma 2.1 to conclude that for any 1 ≤ i 6= j ≤ k,

P (e(Xi ∪ Xj) > E(e(Xi ∪ Xj)) + z) ≤ exp

(

− z2

2
∑n−t

i=1 d(ui)2

)

≤ exp

(

− z2

8m2−α

)

.

Let z =
√

8 ln(k(k − 1)/2)m1−α/2. Then for 1 ≤ i 6= j ≤ k,

P (e(Xi ∪ Xj) > E(e(Xi ∪ Xj)) + z) < exp

(

− ln
k(k − 1)

2

)

=
2

k(k − 1)
.

So there exists a partition V (G) = X1 ∪ X2 ∪ ... ∪ Xk such that, for 1 ≤ i 6= j ≤ k,

e(Xi ∪ Xj) ≤ 4

k2
m +

√

2/ǫm1/2+α + z

≤ 4

k2
m +

√

2/ǫm1/2+α +
√

8 ln(k(k − 1)/2)m1−α/2

Picking α = 1/3 to minimize max{1/2 + α, 1 − α/2}, we have the desired bound.

As a corollary, Conjecture 1.3 holds for graphs with Ω(k12(ln k)3) edges. Hence Conjec-
ture 1.2 holds for all graphs G with δ(G) ≥ ǫn, for any fixed k ≥ 2 and ǫ > 0.

4 Bounds for 4-partitions and 5-partitions

In this section, we prove Conjecture 1.2 for 4-partitions and 5-partitions. We use Lemma 2.2
for 4-partitions. For 5-partitions, we need the following lemma.

Lemma 4.1 Let aj ≥ 0 for j ∈ {1, . . . , 5} such that α :=
∑5

j=1 aj > 0, and let fij(xi, xj) =
(ai + aj)(xi + xj) for 1 ≤ i 6= j ≤ 5. Then there exist pi ∈ [0, 2/5], 1 ≤ i ≤ 5, such that
∑5

i=1 pi = 1 and, for 1 ≤ i 6= j ≤ 5, fij(pi, pj) ≤ 4α/15.

10



Proof. If there exists some l ∈ {1, . . . , 5} such that al ≥ 5α/11, then ai + aj ≤ 6α/11 for
{i, j} ⊆ {1, . . . , 5} \ {l}. Let pl = 1/45 and let pi = 11/45 for i ∈ {1, . . . , 5} \ {l}. Then for
i ∈ {1, . . . , 5} \ {l},

fil(pi, pl) = (ai + al)(pi + pl) ≤ α

(

11

45
+

1

45

)

=
4

15
α;

and for {i, j} ⊆ {1, . . . , 5} \ {l},

fij = (ai + aj)(pi + pj) ≤
6α

11

(

11

45
+

11

45

)

=
4

15
α.

Therefore, we may assume that ai < 5α/11 for all 1 ≤ i ≤ 5. By Lemma 2.2, for any
1 ≤ l ≤ 5 there exist pl

i ∈ [0, 1/2], i ∈ {1, . . . , 5} \ {l}, such that
∑

i∈{1,...,5}\{l} pl
i = 1 and, for

{i, j} ⊆ {1, . . . , 5} \ {l},
(ai + aj)(p

l
i + pl

j) ≤
1

3
(α − al).

Indeed, by the remark following Lemma 2.2, we may choose pl
i, i ∈ {1, . . . , 5} \ {l}, such that

pl
i = 0 when ai > (α − al)/2, and pl

i ≤ max{1/2 − ai/(α − al), 1/3} when ai ≤ (α − al)/2.
For 1 ≤ i ≤ 5, let pi = 1

5

∑

l∈{1,...,5}\{i} pl
i. Then pi ∈ [0, 2/5], and

5
∑

i=1

pi =
1

5

5
∑

i=1

∑

l∈{1,...,5}\{i}

pl
i =

1

5

5
∑

l=1

∑

i∈{1,...,5}\{l}

pl
i =

1

5

5
∑

l=1

1 = 1.

So for 1 ≤ i 6= j ≤ 5,

fij(pi, pj) = (ai + aj)(pi + pj)

=
1

5
(ai + aj)





∑

l∈{1,...,5}\{i}

pl
i +

∑

l∈{1,...,5}\{j}

pl
j





=
1

5





∑

l∈{1,...,5}\{i,j}

(ai + aj)(p
l
i + pl

j)



+
1

5
(ai + aj)(p

j
i + pi

j)

≤ 1

15





∑

l∈{1,...,5}\{i,j}

(α − al)



+
1

5
(ai + aj)(p

j
i + pi

j)

=
1

15
(2α + ai + aj) +

1

5
(ai + aj)(p

j
i + pi

j)

=
2

15
α + (ai + aj)

(

1

15
+

1

5
(pj

i + pi
j)

)

.

We need to show that fij(pi, pj) ≤ 4
15α for 1 ≤ i 6= j ≤ 5.

If ai > (α−aj)/2 and aj > (α−ai)/2, then pj
i = pi

j = 0, and hence fij(pi, pj) ≤ 3
15α < 4

15α.

Now assume ai > (α − aj)/2 and aj ≤ (α − ai)/2. Then pj
i = 0 and pi

j ≤ max{1/2 −
aj/(α − ai), 1/3}. Suppose 1/2 − aj/(α − ai) > 1/3. Then aj < (α − ai)/6; and hence, since

11



ai > (α − aj)/2, we have ai > (α − α/6 + ai/6)/2. Solving this inequality for ai, we have
ai > 5α/11 which is in conflict with our assumption. Therefore, 1/2 − aj/(α − ai) ≤ 1/3, and
so pi

j ≤ 1/3. Hence

fij(pi, pj) ≤
2

15
α + (ai + aj)

(

1

15
+

1

5

1

3

)

≤ 4

15
α.

By symmetry, if aj > (α − ai)/2 and ai ≤ (α − aj)/2, then fij(pi, pj) ≤ 4
15α.

So we are left with the case when ai ≤ (α − aj)/2 and aj ≤ (α − ai)/2. Then ai + aj ≤
α − (ai + aj)/2, and so ai + aj ≤ 2α/3. Moreover, pj

i ≤ max{1/2 − ai/(α − aj), 1/3} and
pi

j ≤ max{1/2 − aj/(α − ai), 1/3}.
If 1/2−ai/(α−aj) > 1/3 and 1/2−aj/(α−ai) > 1/3, then 6ai +aj < α and 6aj +ai < α.

Hence ai + aj < 2α/7, and so (since pj
i ≤ 1/2 and pi

j ≤ 1/2),

fij(pi, pj) ≤
2

15
α + (ai + aj)

(

1

15
+

1

5

(

1

2
+

1

2

))

<
2

15
α +

2

7

4

15
α <

4

15
α.

If 1/2 − ai/(α − aj) > 1/3 and 1/2 − aj/(α − ai) ≤ 1/3, then 6ai + aj ≤ α and pi
j ≤ 1/3.

Since aj ≤ (α − ai)/2, ai + 2aj ≤ α. So 11(ai + aj) = 6ai + aj + 5(ai + 2aj) ≤ 6α, and hence
ai + aj ≤ 6α/11. Then

fij(pi, pj) ≤
2

15
α + (ai + aj)

(

1

15
+

1

5

(

1

2
+

1

3

))

≤ 2

15
α +

6

11

7

30
α <

4

15
α.

The case when 1/2 − ai/(α − aj) ≤ 1/3 and 1/2 − aj/(α − ai) > 1/3 is symmetric.
Therefore, we may assume that 1/2−ai/(α−aj) ≤ 1/3 and 1/2−aj/(α−ai) ≤ 1/3. Then

pj
i ≤ 1/3 and pi

j ≤ 1/3. Recall that ai + aj ≤ 2α/3. Hence

fij(pi, pj) ≤
2

15
α + (ai + aj)

(

1

15
+

1

5

(

1

3
+

1

3

))

≤ 2

15
α +

2

3

1

5
α =

4

15
α.

Using the same proof of Theorem 2.5, with Lemma 2.2 and Lemma 4.1 in place of Lemma 2.4,
we have the following results on 4-partitions and 5-partitions.

Theorem 4.2 f(4,m) ≤ m/3 + O(m4/5).

Theorem 4.3 f(5,m) ≤ 4m/15 + O(m4/5).

Recall that the graphs K1,n give f(4,m) ≥ m/3 and f(5,m) ≥ m/4.
When k = 4, 12m/((k + 2)(k + 1)) = 3/5 > 1/3. So as a consequence of Theorem 4.2,

Conjecture 1.2 holds for k = 4. When k = 5, 12m/((k + 2)(k + 1)) = 2/7 > 4/15. Hence,
Theorem 4.3 establishes Conjecture 1.2 for k = 5.

12



5 Simultaneous bounds for 3-partitions and 4-partitions

In this section, we study the following problem suggested by Bollobás and Scott [7].

Problem 5.1 For any integer k ≥ 2 and for any graph G with m edges and n vertices, is it

possible to find a partition V1, . . . , Vk of V (G) such that for 1 ≤ i ≤ k,

e(Vi) ≤
m

k2
+

k − 1

2k2

(

√

2m +
1

4
− 1

2

)

,

and for 1 ≤ i 6= j ≤ k,

e(Vi ∪ Vj) ≤
12m

(k + 2)(k + 1)
+ O(n)?

Recall that Bollobás and Scott [5] showed the existence of a k-partition satisfying the
above bound on e(Vi), and Kkn+1 are the only extremal graphs. Also recall that the bound
on e(Vi ∪ Vj) is best possible for Kk+2.

We show that for k = 3 and k = 4, one can find partitions that satisfy these bounds
asymptotically. For large k, a similar approach as in the proofs of Lemma 2.4 and Theorem 2.5
may be used to give some bounds.

Note that in the proofs to follow, we will use the fact that the maximum of x(a−x), a > 0,
is a2/4.

Lemma 5.2 Let aj ≥ 0 for j = 1, 2, 3 such that α := a1 + a2 + a3 > 0, let fij(xi, xj) =
(ai + aj)(xi + xj) for 1 ≤ i 6= j ≤ 3, and let gi(xi) = aixi for 1 ≤ i ≤ 3. Then there exist

pi ∈ [0, 2/3], 1 ≤ i ≤ 3, such that
∑3

i=1 pi = 1, fij(pi, pj) ≤ 5α/9 for 1 ≤ i 6= j ≤ 3, and

gi(pi) ≤ α/9 for 1 ≤ i ≤ 3.

Proof. First, assume that ai < 2α/3 for all i = 1, 2, 3. Let pi = 2/3− ai/α. Then pi ∈ [0, 2/3],
i = 1, 2, 3, and p1 + p2 + p3 = 1. Moreover, for 1 ≤ i 6= j ≤ 3,

fij(pi, pj) =
ai + aj

α

(

4

3
− ai + aj

α

)

α ≤ 4

9
α <

5

9
α

and, for i = 1, 2, 3,

gi(pi) =
ai

α

(

2

3
− ai

α

)

α ≤ 1

9
α.

Next assume that some ai > 5α/6, say a3 > 5α/6. So a1 + a2 ≤ α/6. We choose
p1 = p2 = 4/9 and p3 = 1/9. Then f12(p1, p2) < α/6 < 5α/9; fi3(pi, p3) ≤ 5α/9 for i = 1, 2;
g3(p3) ≤ α/9; and gi(pi) ≤ (α/6)(4/9) = 2α/27 < α/9 for i = 1, 2.

Therefore, we may assume that there exists some ai, say a3, such that 2α/3 ≤ a3 ≤ 5α/6.
Then α/6 ≤ a1 + a2 ≤ α/3. Let p3 = 0 and pi = 2/3 − ai/(3(a1 + a2)) for i = 1, 2. Then
pi ∈ [0, 2/3] and p1 + p2 + p3 = 1.

Clearly, g3(p3) = 0 and, for i = 1, 2,

gi(pi) =
ai

3(a1 + a2)

(

2

3
− ai

3(a1 + a2)

)

3(a1 + a2) ≤
3

9
(a1 + a2) ≤

1

9
α.
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Note that f12(p1, p2) ≤ (a1 + a2) ≤ α/3 < 5α/9. So it remains to show that f13(p1, p3) ≤
5α/9 and f23(p2, p3) ≤ 5α/9. By symmetry we only need to prove f13(p1, p3) ≤ 5α/9.

Note that f13(p1, p3) = (a1 +a3)(2/3−a1/(3(α−a3))), which may be viewed as a function
of a1, a3 (while fixing α). We look for the maximal value of h(a1, a3) := f13(p1, p3) subject to
2α/3 ≤ a1 + a3 ≤ α and 2α/3 ≤ a3 ≤ 5α/6. Taking partial derivatives and setting them to 0,
we have

∂h

∂a1
=

2

3
− a1

3(α − a3)
− a1 + a3

3(α − a3)
= 0,

and
∂h

∂a3
=

2

3
− a1

3(α − a3)
− 1

3
a1

a1 + a3

(α − a3)2
= 0.

Then a1/(α− a3) = 1 (from ∂h
∂a1

= ∂h
∂a3

), and hence a3 = 0 (from ∂h
∂a1

= 0), a contradiction. So
the maximal value of h occurs on the boundary of the region defined by 2α/3 ≤ a1 + a3 ≤ α
and 2α/3 ≤ a3 ≤ 5α/6.

When a1 +a3 = 2α/3, then a1 = 0 and a3 = 2α/3, and hence h = 4α/9. When a1 +a3 = α
then h = α/3. When a3 = 2α/3 then h = (a1 + 2α/3)(2/3 − a1/α) = (2/3 + a1/α)(2/3 −
a1/α)α ≤ 4α/9. When a3 = 5α/6, then h ≤ (a1 + 5α/6)(2/3 − 2a1/α) = (5/6 + a1/α)(2/3 −
2a1/α)α ≤ 5α/9. Hence f13(p1, p3) ≤ 5α/9.

The next lemma is for 4-partitions.

Lemma 5.3 Let aj ≥ 0 for j = 1, 2, 3, 4 such that α := a1 + a2 + a3 + a4 > 0, let fij(xi, xj) =
(ai + aj)(xi + xj) for 1 ≤ i 6= j ≤ 4, and let gi(xi) = aixi for 1 ≤ i ≤ 4. Then there exist

pi ∈ [0, 1/2], 1 ≤ i ≤ 4, such that
∑4

i=1 pi = 1, fij(pi, pj) ≤ 2α/5 for 1 ≤ i 6= j ≤ 4, and

gi(pi) ≤ α/16 for 1 ≤ i ≤ 4.

Proof. First, suppose ai < α/2 for all 1 ≤ i ≤ 4. Let pi = 1/2 − ai/α. Then pi ∈ [0, 1/2] for
1 ≤ i ≤ 4, and

∑4
i=1 pi = 1. Moreover, for 1 ≤ i 6= j ≤ 4,

fij(pi, pj) =
ai + aj

α

(

1 − ai + aj

α

)

α ≤ 1

4
α <

2

5
α,

and for 1 ≤ i ≤ 4,

gi(pi) =
ai

α

(

1

2
− ai

α

)

α ≤ 1

16
α.

Now assume that some ai > 4α/5, say a4 > 4α/5. Then a1 +a2 +a3 ≤ α/5. Let p1 = p2 =
p3 = 5/16 and p4 = 1/16. Then for i = 1, 2, 3, fi4(pi, p4) ≤ 6α/16 < 2α/5; for 1 ≤ i 6= j ≤ 3,
fij(pi, pj) ≤ α/5 < 2α/5; g4(p4) ≤ α/16; and for i = 1, 2, 3, gi(pi) ≤ (α/5)(5/16) = α/16.

So we may assume that there exists some ai, say a4, such that α/2 ≤ a4 ≤ 4α/5. Then
α/5 ≤ a1 + a2 + a3 ≤ α/2. Let p4 = 0 and pi = 1/2 − ai/(2(α − a4)). Then pi ∈ [0, 1/2] and
∑4

i=1 pi = 1.
Clearly, g4(p4) = 0. Note that α − a4 ≤ α/2. So for i = 1, 2, 3

gi(pi) =
ai

2(α − a4)

(

1

2
− ai

2(α − a4)

)

2(α − a4) ≤
1

16
α;
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and for 1 ≤ i 6= j ≤ 3,

fij(pi, pj) =
ai + aj

2(α − a4)

(

1 − ai + aj

2(α − a4)

)

2(α − a4) ≤
1

4
α <

2

5
α.

Thus it remains to prove fi4(pi, p4) ≤ 2α/5 for i = 1, 2, 3. By symmetry, we only prove
f14(p1, p4) ≤ 2α/5. Note that h(a1, a4) := f14(p1, p4) = (a1 + a4)(1/2 − a1/(2(α − a4))) may
be viewed as a function of a1, a4 (while fixing α), and we look for its maximal value subject
to α/2 ≤ a1 + a4 ≤ α and α/2 ≤ a4 ≤ 4α/5.

Taking partial derivatives and setting them to 0, we have

∂h

∂a1
=

1

2
− a1

2(α − a4)
− 1

2

a1 + a4

α − a4
= 0,

and
∂h

∂a4
=

1

2
− a1

2(α − a4)
− 1

2
a1

a1 + a4

(α − a4)2
= 0.

Then a1/(α− a4) = 1 (from ∂h
∂a1

= ∂h
∂a4

), and so a4 < 0 (from ∂h
∂a1

= 0), a contradiction. Thus,
the maximal value of h occurs when a1 + a4 ∈ {α/2, α} or a4 ∈ {α/2, 4α/5}.

When a1+a4 = α/2, we have a1 = 0 and a4 = α/2, and hence h = α/4. When a1+a4 = α,
then h = 0. When a4 = α/2 then h = α(1/2 + a1/α)(1/2 − a1/α) ≤ α/4. When a4 = 4α/5,
then h = α(4/5 + a1/α)(1/2 − 5a1/(2α)) ≤ 2α/5. Hence f14(a1, a4) ≤ 2α/5.

Now we use Lemma 5.2 and (essentially) the same proof of Theorem 2.5 to prove the
following.

Theorem 5.4 Let G be a graph with m edges. Then there is a partition X1,X2,X3 of V (G)
such that for 1 ≤ i ≤ 3,

e(Xi) ≤
1

9
m + O(m4/5),

and for 1 ≤ i 6= j ≤ 3,

e(Xi ∪ Xj) ≤
5

9
m + O(m4/5).

Proof. We may assume that G is connected. Let V (G) = {v1, . . . , vn} such that d(v1) ≥
d(v2) ≥ . . . ≥ d(vn). Let V1 = {v1, . . . , vt} with t = ⌊mα⌋, where 0 < α < 1/2. Then
t < n, e(V1) ≤ 1

2m2α, and d(vt+1) ≤ 2m1−α. Let V2 := V (G) \ V1 = {u1, . . . , un−t} such that
e(ui, V1 ∪ {u1, . . . , ui−1}) > 0 for i = 1, . . . , n − t.

Fix a random 3-partition V1 = Y1 ∪ Y2 ∪ Y3, and assign each member of Yi the color i,
1 ≤ i ≤ 3. Extend this coloring to V (G) such that each vertex ui ∈ V2 is independently
assigned the color j with probability pi

j, where
∑3

j=1 pi
j = 1 and pi

j will be determined later.
Let Zi denote the indicator random variable of the event of coloring ui.

Let Gi = G[V1 ∪ {u1, · · · , ui}] for i = 1, . . . , n − t, and let G0 = G[V1]. Let X0
j = Yj and

x0
jl = e(X0

j ∪ X0
l ) for 1 ≤ j, l ≤ 3. For i = 1, . . . , n − t and 1 ≤ j, l ≤ 3, define

Xi
j := {vertices of Gi with color j},

xi
jl := e(Xi

j ∪ Xi
l ),

∆xi
jl := xi

jl − xi−1
jl ,

bi
j := e(ui,X

i−1
j ).
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When j = l, let xi
j := xi

jl and ∆xi
j = ∆xi

jl. Note that bi
j depends on (Z1, . . . , Zi−1) only and

∑3
j=1 bi

j = e(ui, Gi−1) is in dependent of (Z1, . . . , Zi−1). Let ai
j =

∑

(Z1,...,Zi−1)
P (Z1, . . . , Zi−1)b

i
j ,

which is determined by ps
j , 1 ≤ j ≤ 3 and 1 ≤ s ≤ i − 1. As in the proof of Theorem 2.5, for

1 ≤ i ≤ n − t and 1 ≤ j 6= l ≤ 3 we have

E(∆xi
jl) = (ai

j + ai
l)(p

i
j + pi

l),

and for 1 ≤ i ≤ n − t we have
E(∆xi

j) = ai
jp

i
j.

By Lemma 5.2, there exist pi
j ∈ [0, 2/3], 1 ≤ j ≤ 3, such that

∑3
j=1 pi

j = 1; for 1 ≤ i ≤ n− t
and 1 ≤ j 6= l ≤ 3,

E(∆xi
jl) ≤

5

9

3
∑

j=1

ai
j =

5

9

3
∑

j=1

bi
j =

5

9
e(ui, Gi−1);

and for 1 ≤ i ≤ n − t,

E(∆xi
j) ≤

1

9

3
∑

j=1

ai
j =

1

9

3
∑

j=1

bi
j =

1

9
e(ui, Gi−1).

Note that pi
j is determined by ai

j , 1 ≤ j ≤ 3; and hence pi
j is recursively defined by ps

j ,
1 ≤ j ≤ 3 and 1 ≤ s ≤ i − 1. Now

E(xn−t
jl ) =

5

9

n−t
∑

i=1

e(ui, Gi−1) + x0
jl ≤

5

9
m + e(V1),

and

E(xn−t
j ) ≤ 1

9

n−t
∑

i=1

e(ui, Gi−1) + x0
j ≤ 1

9
m + e(V1).

Clearly, changing the color of ui (i.e., changing Zi) affects xjl := xn−t
jl and xj := xn−t

j by
at most d(ui). So by Lemma 2.1,

P (xjl > E(xjl) + z) ≤ exp

(

− z2

8m2−α

)

,

and

P (xj > E(xj) + z) ≤ exp

(

− z2

8m2−α

)

.

Let z = (8 ln 6)
1

2 m1−α

2 . Then for 1 ≤ j 6= l ≤ 3,

P (xjl > E(xjl) + z) <
1

6
,

and for 1 ≤ j ≤ 3,

P (xj > E(xj) + z) <
1

6
.
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So there exists a partition V (G) = X1 ∪ X2 ∪ X3 such that for 1 ≤ j 6= l ≤ 3,

e(Xj ∪ Xl) ≤ E(xjl) + z ≤ 5

9
m + o(m),

and for 1 ≤ j ≤ 3,

e(Xj) ≤ E(xj) + z ≤ 1

9
m + o(m).

The o(m) term in both expressions is

1

2
m2α + (8 ln 6)

1

2 m1−α

2 .

Picking α = 2
5 to minimize max{2α, 1 − α/2}, the o(m) term becomes O(m

4

5 ).

By the same argument as in the proof of Theorem 5.4, using Lemma 5.3 instead of
Lemma 5.2, we have the following result.

Theorem 5.5 Let G be a graph with m edges. Then there is a partition X1,X2,X3,X4 of

V (G) such that for 1 ≤ i ≤ 4,

e(Xi) ≤
1

16
m + O(m4/5),

and for 1 ≤ i 6= j ≤ 4,

e(Xi ∪ Xj) ≤
2

5
m + O(m4/5).
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